[4] involute ASM (high-intensity gear design system)

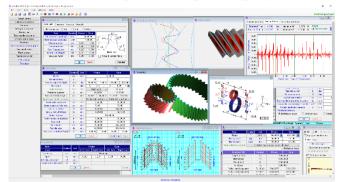


Fig. 4.1 involute ASM (high-intensity gear/asymmetry gear)

4.1 Abstract

This software is design support software for asymmetric pressure angle involute gear (hereinafter referred to as asymmetric gear). The whole screen is shown in Figure 4.1. Asymmetrical gears can increase tooth load capacity without changing gear size or material. Compared with standard pressure angle, high pressure square teeth have lower Hertz stress, smaller friction coefficient, smaller slip ratio, and lower flash temperature.

4.2 Software structure

The configuration of involute ASM is shown in Table 4.1. " \bigcirc " in the table is included in the basic software, " \bigcirc " is optional.

Type of gear: involute gear, external and internal gear

Table 4.1	software structure
14010 4.1	software subclure

Item	Structure
<1>Basic rack	0
<2> Gear dimension	0
<3> Inference	0
<4> Tooth creation drawing	0
<5> Meshing drawing	0
<6> Meshing rotation function	0
<7>Tooth profile (DXF file)	0
<8> Tooth profile rendering	0
<9> Gear accuracy	0
<10> Design data management	0
<11>JGMA6101,6102, JGMA401,402	0
$\langle 12 \rangle$ Metal \times plastic gear strength (JIS B 1759)	0
<13> Bearing load	0
<14> Tooth profile (3D-IGES file)	0
<15> Rotational transmission error	0
(Fourier analysis, Wow · flutter, CSV output)	0
<16> Tooth modification (involute, lead, bias)	0
<17> Contact pattern	0
<18> FEM Tooth Profile Analysis	O

4.3 Property (Basic rack, accuracy, strength)

Setup screen is shown in Fig.4.2 \sim 4.5.

• gear combination : external × external, external × internal

: normal, low, special

- Basic rack
- tooth tip circle decision : normal, equal clearance

• There are two types of strength calculation standards for steel gears as shown in Figure 4.5.

- JGMA 401-02:1974, 402-02:1975
- · JGMA 6101-02:2007, 6102-02:2009

In addition, the strength calculation standard of plastic gears corresponds to JIS B 1759 (2013).

Default setting	
asic rack Dimension Accuracy Strength	
Recommend O Full O Stub O Either	
Item Symbol Pinion Gear	71/2
Left creature appleIder] cripi 30,00000 T	anR
Right pressure angle[deg] ct.nR 17.00000	1 Al
Addendum factor hap 1,200 1,200	1
Dedendum factor hfo 1.450 1.450 2 rol	roR S
Root R factor(Left) rol 0.220 0.220	V_=
	Basic rack
Clearance factor cko 0.250 0.250 Actual	dimension figure
OK Gancel	Standar
Fig. 4.2 Basic rack (asymm	etry)
Default setting	•
Basic rack Dimension Accuracy Strength	
Gear type Determinat	tion of tip circle
● External×External ○ External×Internal ● Star	dard
O Faux	al clearance
Default value is set when setting.	
Determination of profile shift coefficient and center distance	
O determine center distance from xn	
O determine xn from center distance	
etermine center distance no relation to xn	
OK Cancel	Standard
	otandard
Fig. 4.3 Dimension	
🛃 Default setting	— X
Basic rack Dimension Accuracy Stre	ength
Kinda at an anna an	
Kinds of accuracy	
	983)
JIS B 1702(1976) JGMA 116-02(1	
	(1000)
 JIS B 1702(1976) JGMA 116-02(1 JIS B 1702-1(1998) JIS B 1702-2 	(1998)
● JIS B 1702-1(1998) JIS B 1702-2	(1998)
	(1998)
● JIS B 1702-1(1998) JIS B 1702-2 ○ JIS B 1702-3(2008)	(1998) itandard
● JIS B 1702-1(1998) JIS B 1702-2 ○ JIS B 1702-3(2008)	
JIS B 1702-1(1998) JIS B 1702-2 JIS B 1702-3(2008) OK Cancel S	

Basic rack Dimension Accuracy	Strength								
Kinds of strength calculation		Unit type							
Steel gear strength calculation	 JGMA6101-02,6102-02 JGMA401-01,402-01 	● SIun it ○ mks un it							
O Plastic gear strength calculation	n(JIS B 1759:2013)	O mks unit							
OK Cancel Standard									

Fig. 4.5 Strength

4.4 Gear dimension

The gear dimensions calculate the dimensions, contact ratio, sliding ratio, tooth thickness, etc.. The contact ratio of the undercut-generated gear is calculated based on the True Involute form (TIF) diameter. Also, if the tip is rounded, the contact ratio is calculated taking into account the tip R.

(1) The relationship between center distance and dislocation coefficient is the following three types.

(1.1) The profile shift factor is given to the pinion and gear to determine the center distance.

(1.2) A profile shift factor is given to each gear based on the center distance.

(1.3) The center distance is arbitrarily determined ignoring the profile shift factor.

(2) There are 4 types of setting method of profile shift factor as follows.

- (2.1) Input the profile shift factor directly to each gear.
- $\left(2.2\right)$ Input the over pin size and determine the profile shift factor.

However, in the case of asymmetric gear, it is not possible to the span measurement.

(2.3) The arc tooth thickness is input to determine the profile shift factor.

Fig. 4.6 shows the gear specification setting screen.

Fig. 4.8 shows the dimension result screen when the tooth tip R is set to 0.2 (C surface is also possible) with the chamfering setting shown in Fig. 4.7.

Item	Symbol	Unit	Pinion				Gear					
Module	mn	mm	3.			.00000						
Number of teeth	z		20				40					
Pressure angle(left/right)	αn	deg	30.0000	Γ	17.0000	:	30.0000	1	7.0000			
Helix angle	β	deg	30	٠	0		0	.00	"			
Helix direction			Right hand 🗸			Left hand						
Reference diameter	d	mm	69	.2	3203	138.56406			06			
Base diameter(left/right)	db	mm	57.6461 65.3305		115.2923 130.6		.6610					
Input type of tooth thickness			Profile shift coefficie 🗸			Profile shift coefficie v						
Profile shift coefficient	xn		0.50000			Profile shift coefficient Ball diameter						
Measurement ball diameter	dp	mm	5.811			Circular tooth thicknes						
Over ball distance	dm	mm	79	. 5:	2664	146.13031		31				
Circular tooth thickness	Sn	mm	6.03701			4.71239						
Center distance	a	mm			105	.60	000					
Tooth thinning for backlash	fn	mm	0	.0	0000	0.00000			80			
Face width	Ь	mm	40	.0	0000		40	.000	00			
Tip diameter	da	mm	79	. 4	3203		145	.764	06			
Root diameter	df	mm	63	.5	3203		129	.864	86			
Basic rack root R(left/right)	rf	mm	0.6600	Г	0.6600		0.6600	(.6600			

Fig. 4.6 Gear dimensions

Fig. 4.7 Chamfering setting

			Pir	ion	G	ar
Item	Symbol	Unit		Right face		Right fac
Transverse module	mt	mm	Lett fuee		6410	Tugitt Tug
Transverse pressure angle	at	deg	33,6901			19,4444
Effective face width	hw	mm		40.0	33.6901 000	
Lead	pz	mm	376.			9822
Profile shift amount	Xm	mm		50000		00000
Addendum	ha	mm		1000		6000
Dedendum	hf	mm		8500		3500
Tooth depth	h	mm		9500		9500
Glearance	c	mm		9270		9270
Contact diameter(tip)	dsa	mm	79.3564	79.3076	145.6079	145.5405
Contact diameter(root)	dsf	mm	66.0783	66.9392	133, 1944	134,9449
Base cylindical helix angle	βb	deg	25.6589	28.5648	25.6589	28.5648
Transverse contact pressure angle	aw	deg	35.0314	21.8763	35.0314	21.8763
Contact pitch diameter	dw	mm		4000		8000
Transverse pitch	pbt	mm	9.0550	10.2621	9.0550	10.2621
Normal pitch	pbn	mm	8.1621	9.0130	8,1621	9.0130
Contact length	ga	mm	11.1190	15,1877	11.1190	15.1877
Transverse contact ratio	εa		1.2279	1,4800	1.2279	1.4800
Overlap contact ratio	εβ			2.1	221	
Total contact ratio	εγ		3.3500	3,6020	3.3500	3.6020
Lowest point contact ratio	εαι		0.7800	0.9126	0.7800	0.9126
Highest point contact ratio	εαΗ		0.4479	0.5674	0.4479	0.5674
Sliding ratio(tip)	σa		0.3871	0.6249	0.2702	0.5449
Sliding ratio(root)	σb		-0.3703	-1.1974	-0.6315	-1.6659
Over ball distance	dmʻ	mm	79.	5266	146.	1303
Normal circular tooth thickness	sn'	mm	6.	0370	4.	7124
Transverse circular tooth thickness	sť	mm	6.	9709	5.	4414
Chordal height	hj	mm	5.	2123	3.	6300
Chordal tooth thickness(Reference)	Sj	mm	6.	0327	4.	7119
Addendum factor of basic rack	hao		1.	2000	1.	2000
Dedendum factor of basic rack	hfo		1.	4500	1.	4500
Backlash	jt	mm		0.2	402	
Transverse backlash	jtn	mm	0.1967	0.2229	0.1967	0.2229

Fig. 4.8 Gear dimension result

4.6 Tooth profile

Tooth profile calculation can give division numbers to each tooth profile as shown in Figure 4.9. Then calculate the left and right tooth profile with "**Tooth profile calculation**" and show the tooth profile as shown in Fig. 4.10. The functions related to tooth shape are tooth profile information (Fig. 4.11), tooth shape creation (Fig. 4.12), zoom and distance measurement (Fig. 4.13), and R measurement (Fig. 4.14) as shown in the supplementary form. In addition, there are functions to display and rotate diameter, modification tooth profile, action line, tip width, odd tooth Y measurement.

🛃 Tooth profile calculation 🛛 📃 🖻 🗾							
Item(Division No.)	Symbol	Pinion	Gear				
Fillet area	vuf	30	30				
Involute area	vui	50	50				
Chamfer area	vur	15	15				
Tip circle area	vut	10	10				
Tooth flank	hul	18	18				
0	К	Dancel	Clear				

Fig. 4.9 Tooth profile computation specification

Fig. 4.10 Meshing drawing & support form

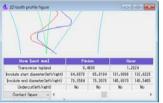


Fig. 4.11 Tooth profile information

Fig. 4.12 Generation profile

Fig. 4.13 Distance measurement

Fig. 4.14 R- measurement

4.7 Teeth profile rendering

The mesh of the 3D tooth profile can be drawn as shown in Figure 4.15, and the contact line can be observed at the mesh. In addition, the direction of the tooth profile can be freely changed by the auxiliary foam, and enlargement, reduction and rotation display of the gear can be displayed.

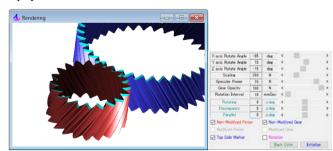


Fig. 4.15 Tooth profile rendering & support form

4.8 Gear accuracy

Figures 4.16 and 4.17 show tolerances for errors according to the new JIS gear accuracy standards JIS B 1702-1: 1998 and JIS B 1702-2: 1998. In addition, it is possible to switch between the new JIS and the old JIS by the settings shown in Figure 4.4. There are the following five types of gear accuracy standards.

- JIS B 1702-1:1998, JIS B 1702-2:1998, JIS B 1702-3:2008
- JIS B 1702:1976
- · JGMA 116-02:1983

					4 Accuracy
					Rate left South face
Accuracy				-D- 8 -	Dimension JD 8 1712-1 JD 8 1102-0
Rate left tooth face ~	_	_			ben
Dimension	1702-2				Einele pitch deviation Cumulative pitch deviation
Inspection year	Symbol	Unit	Pinior	Gear	Total cumulative pitch deviation
Accuracy class	10			1	Total weth profile deviation
The number of continuous pitch	-				Total tooth tlank deviation
	-		-		1 pitch contact deviation/one tooth tao
Master gear	Symbol		For pinion	For goar	Total contact deviation(one tooth face
Number of teeth	100		-40	24	Tooth profile form deviation
Face width	b'	mm	40,000	46,000	Tooth profile slope deviation
Center distance	. 6	m	105,4268	185,9238	Tooth flark for a deviation
Te diameter	da	mm	145,7641	78,4828	Tooth flank close deviation

Accuracy				010							
Rate left tooth face											
Dimension JD 8 1712-1 JD 8 1102-2											
Dom.	Symbol	Unit	Finise	Gear							
Single pitch deviation	fpt	Nm.	8	6.5							
Cumulative pitch deviation	Fpk.	pen	4.5	12							
Total cumulative pitch deviation	fp	Am	19	25							
Total texts profile deviation	Fα	22m	1	1							
Total tooth tlank deviation	10	µn	8.5	1							
1 pitch contact deviation/one tooth face	n	,em (4	1.1							
Total contact deviation(one tooth face)	Fi	alen	27	24							
Tooth profile form deviation	tta.	21.00		2							
Tooth profile slope deviation	tHα	µn	5	1.5							
Tooth flerk form deviation	110	pine -		6.5							
Tooth flank clope deviation	643	//m		1.1							

Fig. 4.16 JIS B 1702-1-2 setting

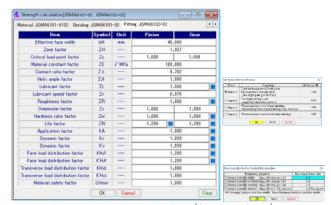
Fig. 4.17 Accuracy tolerance

4.9 Gear strength calculation (steel)

The gear strength calculation has " **JGMA6101-02:2007**" and " **JGMA 6102-02:2009**" based on " **ISO6336:2006**" as shown in Fig. 4.5. In addition, there are two types of "JGMA401-01: 1974" and "402-01: 1975". Fig. 4.18 shows the setting screen of strength calculation. In this example, the high-pressure angle side is used as the acting tooth surface, but it is also possible to calculate the strength with the low-pressure angle side as the acting tooth surface. The selection of materials displays a selection form of the materials adapted to "material" and "heat treatment" as shown in Figure 4.19. Fig. 4.20 shows the setting screen for the coefficient related to bending, Fig. 4.21 shows the strength the strength calculation results.

Note that "
"
"
in the screen is an auxiliary function that allows you to perform numerical conversion, various coefficients, and coefficient selection.

Power JGAM6101-6102 Material J	IGMA6101-6	102 Ber	nding JGMA6101-02	Pitting JGMA6			
Item	Symbol	Unit	Pinion	Gear			
Calculation face width	b	mm	40.000	40.000			
Tooth profile factor	YF		1.729	1.777			
Stress correction factor	YSa		2.088	1.973			
Total tooth profile factor	YFs		3.610 📃	3.505			
Contact ratio factor	Yε		0.746				
Helix angle factor	Yβ		0.	750			
Life factor	YN		0.976 📃	0.976			
Size factor	Yx		1.012	1.012			
Application factor	KA		1.	.000			
Dynamic factor	Kv		1.	.039			
Dynamic factor	Kv'		1.	.038			
Face load factor	KFβ		1.	.000			
Operating condition factor	BT		1.000	1.000			
Material safety factor	SFM		1.000	1.000			


Fig. 4.18 Strength calculation (Power setup)

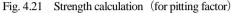
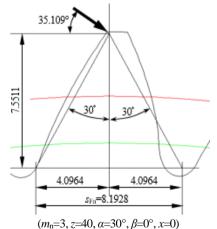

ower JGAM6101-6102	Material .	JGMA6101-0	5102 B	endine	JGMA6101-02	Pitting	JGMA6						
Item		Pinion			Ge	ar			Perios 7	navatki srivcilor			
Class	Carburized	and quenche	ed gear	v	Carburized and o	uenche	l gear	~	Cinc	Caluriani and parcent and Caluriani and parcent and Caluriani and Caluriani	10		5
Kind	Alloy steel			×	Alloy steel			~		Mexenil Diarcon another score	Tool Institut	er d'unte	10
Symbol	SCM415H			×	SCM415H			\sim	ji es	#12	-	0	14
Item		Symbol	Unit	Т	Pinion		3ear		1	2050 17,408	12	- 09	13
Allowable bending	stress	σFlim	MPa		431.0		431.0				182	229	204
Allowable pitting	stress	o'Hlim	MPa		1130.0	1	180.0				12	- 22	四
Core hardne	88		HV		295		295			THEN .	20	 235	411 411
Surface hards	ess		HV		580		580		÷.	* DIG154	- 71	7,8	451
Modulus of elas	iticity	E	MPa		206000.0	208	0.000		1	236231	1		13
Poisson's ra	tio	ν			0.30		.30	_		JOHER DOLLA	80	349	631

Fig. 4.19 Strength calculation (material)

ver JGAM6101-6102 Material .	IGMA6101-6	102 Bene	line JGMAS101-	02 1	Pitting JGMA6 + +			
Item	Symbol	Unit	Pinion		Gear			
Calculation face width	b	mm	40.010	T	40.000			
Tooth profile factor	YF		1.728	1	1.777			
Stress correction factor	YSa		2.018	Т	Selection of Mod	dur of electricity		>
Total tooth profile factor	YFs		3.610			,		
Contact ratio factor	Ys			0.7	Pi	nion		eaz
Helix angle factor	YA			0.7	Material	Modulus of elasticity E1MPa	Material	Modulus of elasticity E2MP
Life factor	YN		0.976		Steel	206000	Steel	206000
Size factor	Yx		1.012		Cast steel	202000	Cast steel	202000
Application factor	KA			1.0	Ductile iron	173000	Ductile iron	178000
Dynamic factor	Kv			1.0	Gray cast iron	118000	Gray cast iron	118000
Dynamic factor	Kv'		5	1.0	Poisso	Poisson's ratio		0.3
Face load factor	KFØ		8	1.0		tor ZE √ MPa		
Operating condition factor	BT	-	1.080					
Material safety factor	SFM		1,080		(Attention)	Steel is Carbon, Alk	syed, Nitriding, St	ainless steel.



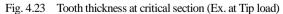

🛃	MA6102-	02]		- • 💌
項目(JGMA6101-02曲げ)	記号	単位	Pinion	Gear
歯元曲げ応力	σF	MPa	249.373	242.120
許容歯元曲げ応力	σFP	MPa.	638.556	638.556
総合安全率	SF		2.561	2.637
許容接線力	Ftlim	N	36995.321	38103.597
項目(JGMA6102-02 歯面)	記号	単位	Pinion	Gear
面圧応力	σH	MPa	883.512	883.512
許容接触応力	σHP	MPa	2040.095	2040.095
総合安全率	SH		2.309	2.309
許容接線力	Felim	N	77032.490	77032.490

Fig. 4.22 Strength calculation result

4.9a Tooth profile factor

The method of calculating the dangerous section tooth thickness when determining the tooth profile factor of a symmetrical tooth gear is defined in each standard, but the dangerous section tooth thickness of the asymmetric tooth gear is not defined. In this software, as shown in Fig. 4.23 and Fig. 4.24, the dangerous section distance on the high-pressure angle side is doubled to be the dangerous section tooth thickness. The load position can be selected from the tip and "HPSTC".

Load position Tip) diameter((standard)	Tip o	liameter(standard)
lob(rack tool) Pinion cutter			Effective Oritical	involute diameter(tip side) load diameter(HPSTC)
Item	Symbol	Unit	Value	
Protuberance	Spr	mm	0.0000	
Tooth profile factor	YF		1.7288	
Stress correction factor	YSa		2.0880	
Total tooth profile factor	YFs		3.6097	
Dengerous section tooth thickness	SFn	mm	8.6107	
Dengerous section tooth depth	hFa	mm	7.9248	
Load angle	αFan	deg	38.9041	
Convergence angle	θ	deg	39.7746	
Load diameter	dk	mm	79.4820	

The load position can choose at tip or HPSTC. Fig. 4.24 Tooth form factor

4.10 Gear strength calculation (plastic gear)

The strength of plastic gears can be calculated by selecting JIS B 1759 (2013) in Fig. 4.5. Although JIS B 1759 "Method for evaluating bending strength of plastic cylindrical gears" is not applied to asymmetrical tooth gears, the tooth form factor is calculated as shown in Figure 4.23. The allowable bending stress of plastic material is based on the gear operation test, and the allowable bending stress of POM is determined to be 80.0 [MPa] from the experimental results of various places. Then, the bending stress at the tooth is compared with the allowable bending stress at the tooth taking into consideration various factors (such as shape factor of the base, life factor, temperature coefficient of the atmosphere, etc.). Please see the standard for details. An example of strength calculation of plastic gears is shown in Figure 4.25 to 4.29.

Item	Symbol	Unit	Pinion		n	Gear				
Module	mn	mm			1	.00000				
Number of teeth	z		16			30				
Pressure angle(left/right)	an	deg	30.0000		17.0000	30.0000 1		17.	17.0000	
Helix angle	β	deg	20	٠	0	'	0.	.00	"	
Helix direction			Right hand \sim		Left hand					
Reference diameter	d	mm	17.02684			81.92533				
Base diameter(left/right)	db	mm	14.5074 16.1914			27.2014 30.358		3589		
Input type of tooth thickness			Profile shift coefficie \sim		Profile shift coefficie .		cie 🗸			
Profile shift coefficient	xn		0.20000		0.00000		_			
Measurement ball diameter	dp	mm	1.798		1.764					
Over ball distance	dm	mm	19.98309		34.48159					
Circular tooth thickness	Sn	mm	1.74741		1.57080					
Center distance	a	mm	24			4.80000				
Tooth thinning for backlash	fn	mm	0.00000		0.00000		_			
Face width	b	mm	10	.00	000	10.00000				
Tip diameter	da	mm	19	.82	684	34.32533				
Root diameter	df	mm	14	.52	684		29	.02533		
Basic rack root R(left/right)	rf	mm	0.220	Г	0.220	0.	.220	0.	220	

Fig. 4.25 Gear dimensions

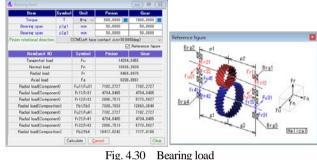
Torque input mode			-Torque.rotational s	peed input mode			
● Torque→power ○ Port	ver→torqu		Pinion	🔘 Gear			
Item	Symbol	Unit	Pinion	Gear			
Evaluation tooth face			CCW(left face cont	act &n=30.0000d	l v		
Material			POM ×	POM	~		
Transmission power	P	¥ ~	104	.7120			
Torque	Т	N-m \sim	1.0000 📃	1.8750			
Rotational speed	n	min-1	1000.0000	533.3333			
Tangential load	Fwt	N	115.9274				
Tangential velocity	VW	m/s	0.9033				
Transverse contact pressure angle	awt	deg	32.76441				
Transverse contact ratio	εα		1.3353				
Number of contact	N		9999999 53		199939		
Rim thickness	sR	mm	5.0000	5.0000	_		
Allowable bending stress	σFlim	MPa	80.018	80.018			
Tool tip R(left)	-		0.2200	0.2200			
Tool tip R(right)	ρ fpv	mm	0.2200	0.2200			
Tooth root shape factor	Yf		1.000 📃	1.000			
Life factor	YNT		0.773 📃	0.829			
Environment temperature factor	Yθ		1.000				
Temperature rising factor	YΔθ		0	.946			
Lubricant factor	YL		1	.190			
Mating gear factor	YM		0	.650	_		
Minimum safety factor	SFmin		1.000	1.000			
	ОК	Cance	al l	Cle	ar		

Fig. 4.26 Strength calculation (Power setup)

Bendine Equivalent spur ener Factor				
Item(Bending)	Symbol	Unit	Pinion	Gear
Bending stress	σF	MPa	33,314	31.559
Tooth form factor	YF		1.795	1.693
Center location of basic rack root R	E	mm	-0.179	-0.179
Auxiliary coefficient(For tooth thickness of root dengerous section)	G		-1.030	-1.230
Auxiliary angle(For tooth thickness of root dengerous section)	н	rad	-0.860	-0.947
Generating angle of rack tookpinion cutterXRoot dengerous section location)	Ø	rad	0.756	0.865
Tooth thickness of root dengerous section	SFn	mm	2.214	2.352
Arm length of bending moment	hFe	mm	1.462	1.528
Tooth root R	ρF	mm	0.484	0.491
Base clinder helix angle	ßb	deg	17	.22940

Fig.4.27 Strength calculation result

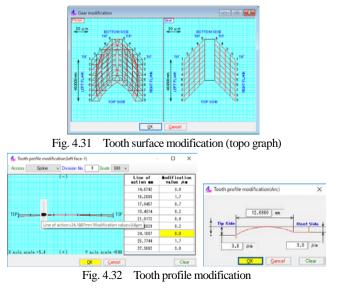
Bendine Equivalent spur eear Factor					
Item(Equivalent spur cear)	Symbol	Unit	Pinion	Gear	
Number of teeth	2n		18.6643	34.3356	
Transverse contact ratio	e an	-	1.4637		
Reference diameter	dn	mm	18.6643	34,3356	
Normal pitch	Ptm	mm	2.	7207	
Base diameter	don	mm	16.1638	30.3071	
Tø dameter	dan	mm	21.4843	37.3956	
Diameter of the circle passing through the outer point(One tooth meshing area)	den	mm	19.0951	35.9756	
Pressure angle of the outer point(One tooth meshing area)	aten	dee	35.66382	32.60183	
Angle of the outer point(One tooth meshing area)	70	deg	8.15817	1.60852	
Working angle of the outer point(One tooth meshing area)	α Fen	deg	32,50565	30,9534	


Fig. 4.28 Virtual spur gear

Bending Equivalent spur gear Factor						
Item(Factor)	Symbol	Unit	Pinion	Gear		
Stress correction factor	Ys		1.921	1.933		
Ratio of arm length(SFn/hFe)	L		1.514	1.539		
Ratio(sFn/ p F)	qs		2.385	2.394		
Helix angle factor	Yβ			0.833		
Rim thickness factor	YB		1.000	1.000		
Back up ratio	BR		1.887	1.887		
Allowable bending stress	σFP	MPa	45.260	48.539		
Safety factor for bending strength	SF		1.359	1.538		
Safety judgment			SF>SFmin	SF > SFmin		

Fig. 4.29 Factors

4.11 Bearing load


Calculate the load acting on the gear and the load acting on the bearing. The load type calculates 20 types of load acting on each bearing, such as tangential force and normal force. The calculation result is shown in Figure 4.30.

4.12 Tooth surface modification (tooth profile, lead, bias)

An example of tooth surface modification is shown in Figure 4.31. In order to obtain this tooth profile, tooth shape correction can also be given by numerical input as shown in Fig. 4.32. However, it is also possible to input numerical values to the patterned tooth profile as shown on the right. Similarly, lead modification can also be set as shown in Figure 4.33. This tooth profile modification and lead modification can be expressed as shown in Figure 4.34. And if it copies to the opposite tooth side, it will become the same tooth profile of the right and left tooth surface, and if it is combined, it can be displayed as Figure 4.31.

In the combo box at the top of the screen in Fig. 4.34, you can select "Tooth profile", "Lead" and "Tooth profile and Lead". Also, the direction of the tooth profile can be specified by the action line or gear diameter. And, the magnification of tooth profile modification can be set up to maximum 1000 times.

AMTEC INC. www.amtecinc.co.jp

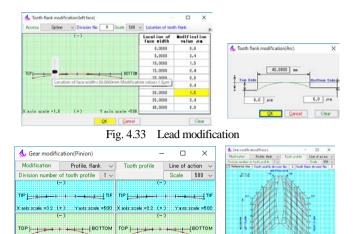


Fig. 4.34 Tooth profile & lead modification, topo graph

Topograph

axis scale =0.8 (+) Yaxis scale =500 X axis scale =0.8 (+) Yaxis sc

OK Can

The tooth profile which has been given tooth surface modification can be set by the tooth profile calculation specifications in Fig. 4.35. The tooth profile calculation conditions set here are valid for the tooth shape shown in Figures 4.10 to 4.14. And this tooth profile can be displayed as shown in Figure 4.36 because it can be superimposed in the rendering in Figure 4.14. Here, the tooth surface is adjusted on the pinion, so the yellow tooth surface appears in the red tooth surface in the figure (the gear is uncorrected).

(tem(Division No.)	Symbol	Pinion	Gear	
Fillet area	vuf	30	30	
Involute area	vui	50	50	
Chamfer area	vur	15	15	
Tip circle area	vut	10	10	
Tooth flank	hul	18	18	

Fig. 4.35 Tooth profile calculation

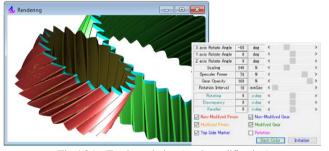


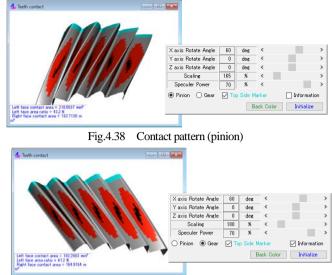
Fig.4.36 Tooth rendering (tooth modification)

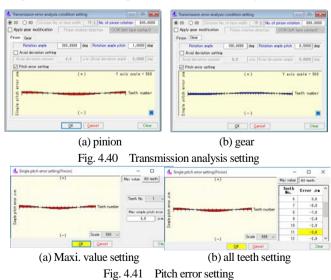
4.13 Tooth surface contact

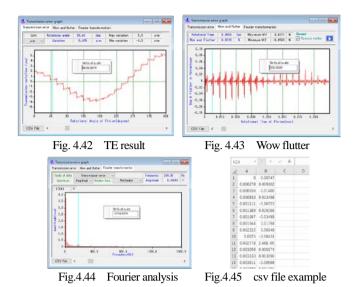
Tooth contact condition can be set in Fig. 4.37 and tooth contact can be confirmed. Here, the tooth contact is shown in Figure 4.38 and Figure 4.39 when the contact clearance is $2.0 \ \mu m$ with the parallelism error and the misalignment error as 0.

Item	Symbol	Unit	Value
Center distance	a	mm	105.6000
Parallelism error	P	deg	0.00000
Discrepancy error	di	deg	0.00000
Lead division number	hul		18
Tooth profile interpolation accuracy	ac	μm	0.0
Division No. of rotation(per 1 pitch)	urP		50
Contact maximum clearance	с	μm	8.0
Rotational direction BOTH(both faces) OCCW	(left face)	CW(right face)

Fig.4.37 Contact analysis setting




Fig.4.39 Contact pattern (gear)


4.14 Transmission error

In transmission error analysis, it is possible to perform no-load transmission error analysis with the tooth profile given in Fig. 4.31. Axis deflection and rotational speed can be set with the transmission error setting in Figure 4.40, and 2D analysis or 3D analysis can be performed. Also, the pitch error can be set to the maximum value or the pitch error of all teeth as shown in Figure 4.41.

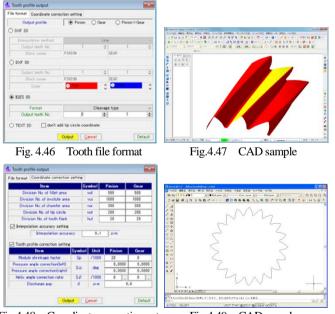
Transmission error analysis results, CSV File (rotation unevenness) and Fourier analysis results are shown in Figures 4.42 to 4.44. You can also hear [Noise] at results in Figure 4.42. Transmission error analysis, wow flutter, and Fourier analysis results can be output to a CSV file as shown in Figure 4.45 using in the lower left of Figure 4.42.

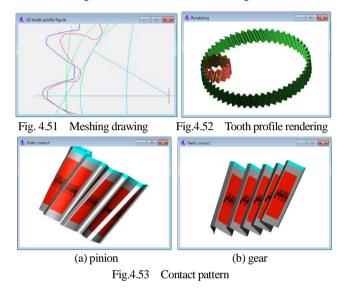
This software is a no-load transmission error analysis. Please use [22] CT-FEM ASM for stress analysis, transmission error analysis and flash temperature analysis corresponding to load and axial angle error.

4.15 Tooth profile output

The generated tooth profile can be output in the tooth profile file format shown in Figure 4.46. In the case of 3D-IGES, output is as shown in Figure 4.47.

In the coordinate correction setting shown in Fig. 4.48, it is possible to output the tooth profile in consideration of use for the mold. As an example, Fig. 4.49 shows a tooth profile (2D) considering a module contraction rate of 20/1000. In addition, tooth profile coordinate values can be output as a text file by "**TXT 2D**" at the bottom of Fig. 4.46.




Fig.4.48 Coordinate correction setup Fig.4.49 CAD sample

4.16 Calculation example of internal gear

The internal gear can be calculated by selecting "External gear \times internal gear" in the settings in Figure 4.3. Examples of gear specifications, dimensions, meshing diagrams, tooth profile rendering, and tooth contact are shown in Figures 4.50 to 4.53. The pinion shown in Fig. 4.52 has the same gear face modification as in Fig. 4.31. In addition, strength calculation, transmission error analysis, tooth profile output, etc. are the same as "external gear \times external gear".

Fig. 4.50 Gear dimensions (internal gear)

4.17 FEM tooth profile stress analysis (option)

Examples of FEM analysis are shown in Figure 4.54 and Figure 4.55. The setting method is the same as [1]involute Σ iii (spur and helical gear design system).

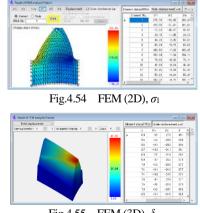


Fig.4.55 FEM (3D), δ_m

4.18 Other

The printing function, [HELP] function, and saving / reading of design data are the same as [1]involute Σ iii (spur and helical gear design system).

Please use [22] **CT-FEM ASM** for the analysis of 3D stress, tooth surface stress, flash temperature etc. of asymmetric gear.